Уравнение движения самолета дано как. Выделение уравнений продольного движения из полной системы уравнений продольного движения самолета

Страница 1

Движение самолета как твердого тела состоит из двух движений: движения центра масс и движения вокруг центра масс. Поскольку в каждом из этих движений самолет обладает тремя степенями свободы, то в целом его движение характеризуется шестью степенями свободы. Для задания движения в любой момент времени необходимо задать шесть координат как функций времени.

Для определения положения самолета будем применять следующие системы прямоугольных координат (рис.2.1):

неподвижную систему Ox0y0z0, начало которой совпадает с центром масс самолета, ось Oy0 направлена по вертикали, а оси Ox0 и Oz0 горизонтальны и имеют фиксированное направление по отношению к Земле;

связанную систему Ox1y1z1 с началом в центре масс самолета, оси которой направлены по главным осям инерции самолета: ось Ox1 – по продольной оси, ось Oy1 – в плоскости симметрии, ось Oz1 перпендикулярна к плоскости симметрии;

скоростную систему Oxyz с началом в центре масс самолета, ось Ox которой направлена по вектору скорости V, ось Oy – в плоскости симметрии, ось Oz перпендикулярна к плоскости симметрии;

Положение связанной системы Ox1y1z1 по отношению к неподвижной системе Ox0y0z0 характеризуется углами Эйлера: φ – угол крена, ψ – угол рыскания и J - угол тангажа.

Положение вектора воздушной скорости V относительно связанной системы Ox1y1z1 характеризуется углом атаки α и углом скольжения b.

Нередко вместо инерциальной системы координат выбирается система, связанная с Землей. Положение центра масс летательного аппарата в этой системе координат можно характеризовать высотой полета H, боковым отклонением от заданной траектории полета Z и пройденным расстоянием L.

Рис. 2.1 Системы координат

Рассмотрим плоское движение летательного аппарата, при котором вектор скорости центра масс совпадает с плоскостью симметрии. Самолет в скоростной системе координат представлен на рис.2.2.

Рис. 2.2 Самолет в скоростной системе координат

Уравнения продольного движения центра масс самолета в проекции на оси OXa и OYa запишем в виде

(2.1)

(2.2)

Где m – масса;

V – воздушная скорость самолета;

P – сила тяги двигателя;

a – угол атаки;

q – угол наклона вектора скорости к горизонту;

Xa – сила лобового сопротивления;

Ya – аэродинамическая подъемная сила;

G – сила веса.

Обозначим через Mz и Jz соответственно суммарный момент аэродинамических сил, действующих относительно поперечной оси, проходящей через центр масс, и момент инерции относительно той же оси. Уравнение моментов относительно поперечной оси самолета будет:

(2.3)

Если Мшв и Jв – шарнирный момент и момент инерции руля высоты относительно его оси вращения, Мв – управляющий момент, создаваемый системой управления, то уравнение движения руля высоты будет:

(2.4)

В четырех уравнениях (2.1) – (2.4) неизвестными являются пять величин J, q, a, V и dв.

В качестве недостающего пятого уравнения возьмем кинематическое уравнение, связывающее величины J, q и a (см. рис.2.2).

Обычно полёт самолёта рассматривают как движение в пространстве абсолютно жёсткого тела. При составлении уравнений движения используют законы механики, позволяющие в самом общем виде записать уравнения движения центра масс самолёта и его вращательного движения вокруг центра масс.

Исходные уравнения движения вначале записывают в векторной форме

m - масса самолета;

Равнодействующая всех сил;

Главный момент внешних сил самолёта, вектор суммарного вращающего момента;

Вектор угловой скорости системы координат;

Момент количества движения самолёта;

Знак «» обозначает векторное произведение. Далее переходят к обычной скалярной записи уравнений, проектируя векторные уравнения на некоторую систему координатных осей.

Получаемые общие уравнения оказываются настолько сложными, что, по существу, исключают возможность проведения наглядного анализа. Поэтому в аэродинамике летательных аппаратов вводятся различные упрощающие приёмы и предположения. Очень часто оказывается целесообразным разделить полное движение самолёта на продольное и боковое. Продольным называется движение с нулевым креном, когда вектор силы тяжести и вектор скорости самолёта лежат в его плоскости симметрии. Далее будем рассматривать только продольное движение самолёта (рис. 1).

Это рассмотрение будем вести с использованием связанной ОXYZ и полусвязанной ОX e Y e Z e систем координат. За начало координат обеих систем принимается точка, в которой расположен центр тяжести самолета. Ось ОX связанной системы координат проводится параллельно хорде крыла и называется продольной осью самолета. Нормальная ось ОY перпендикулярна оси ОX и расположена в плоскости симметрии самолета. Ось ОZ перпендикулярна к осям ОX и ОY, а следовательно, и к плоскости симметрии самолета. Она называется поперечной осью самолета. Ось ОX e полусвязанной системы координат лежит в плоскости симметрии самолета и направлена по проекции на неё вектора скорости. Ось ОY e перпендикулярна оси ОX e и расположена в плоскости симметрии самолета. Ось ОZ e перпендикулярна к осям ОX e и ОY e .


Остальные обозначения, принятые на рис. 1: - угол атаки, - угол тангажа, - угол наклона траектории, - вектор воздушной скорости, - подъемная сила, - сила тяги двигателей, - сила лобового сопротивления, - сила тяжести, - угол отклонения рулей высоты, - момент тангажа, вращающий самолёт вокруг оси ОZ.

Запишем уравнение продольного движения центра масс самолёта

где - суммарный вектор внешних сил. Представим вектор скорости с использованием его модуля V и угла его поворота относительно горизонта:

Тогда производная вектора скорости по времени запишется в виде:

С учётом этого уравнения продольного движения центра масс самолёта в полусвязанной системе координат (в проекциях на оси ОX e и ОY e) примут вид:

Уравнение вращения самолёта вокруг связанной оси OZ имеет вид:

где J z - момент инерции самолета относительно оси OZ, M z - суммарный вращающий момент относительно оси OZ.

Полученные уравнения полностью описывают продольное движение самолета. В курсовой работе рассматривается только угловое движение самолёта, поэтому далее будем учитывать только уравнения (4) и (5).

В соответствии с рис. 1, имеем:

угловая скорость вращения самолёта вокруг поперечной оси OZ (угловая скорость тангажа).

При оценке качества управляемости самолета большое значение имеет перегрузка. Она определяется как отношение действующей на самолёт суммарной силы (без учёта веса) к силе веса самолёта. В продольном движении самолёта используют понятие «нормальная перегрузка». По ГОСТ 20058-80 она определяется как отношение проекции главного вектора системы сил, действующих на самолёт, без учёта инерционных и гравитационных сил, на ось OY связанной системы координат к произведению массы самолёта на ускорение свободного падения:

Переходные процессы по перегрузке и угловой скорости тангажа определяют оценку летчиком качества управляемости продольного движения самолета.

Наличие у ЛА плоскости материальной симметрии позволяет разделить его пространственное движение на продольное и боковое. К продольному движению относится движение ЛА в вертикальной плоскости при отсутствии крена и скольжения, при нейтральном положении руля и элеронов. При этом происходят два поступательных и одно вращательное движение. Поступательное движение осуществляются вдоль вектора скорости и по нормали, вращательное – вокруг оси Z. Продольное движение характеризуется углом атаки α, углом наклона траектории θ, углом тангажа, скоростью полета, высотой полета, а также положением руля высоты и величиной и направлением в вертикальной плоскости тяги ДУ.

Система уравнений продольного движения самолета.

Замкнутая система, описывающая продольное движение самолета может быть выделена из полной системы уравнений, при условии, что параметры бокового движения, а также углы отклонения органов управления креном и рысканьем равны 0.

Соотношение α = ν – θ оплучено из первого геометрического уравнения после его преобразования.

Последнее уравнение системы 6.1 не влияет на остальные и может быть решено отдельно. 6.1 – нелинейная система, т.к. содержит в себе произведения переменных и тригонометрических функций, выражения для аэродинамических усилий.

Для получения упрощенной линейной модели продольного движения самолета, необходимо ввести определенные допущения и провести процедуру линеаризации. С целью обоснования дополнительных допущений, нам необходимо рассмотреть динамику продольного движения самолета при ступенчатом отклонении руля высоты.

Реакция самолета на ступенчатое отклонение руля высоты. Разделение продольного движения на долго- и кратковременное.

При ступенчатом отклонении δ в возникает момент М z (δ в), который вращает относительно оси Z со скоростью ω z . При этом происходит изменение угла тангажа и атаки. При увеличении угла атаки возникает приращение подъемной силы и соответствующий этому момент продольной статической устойчивости М z (Δα),который противодейсвует моменту М z (δ в). По истечению вращения, на определенном угле атаки он его компенсирует.

Изменение угла атаки после уравновешивания моментов М z (Δα) и М z (δ в) останавливается, но, т.к. самолет обладает определенными инерциальными свойствами, т.е. обладает моментом инерции I z относительно оси ОZ, то установление угла атаки носит колебательный характер.

Угловые колебания самолета вокруг оси ОZ будут демпфировать ся с помощью собственного момента аэродинамического демпфирования М z (ω z). Приращение подъемной силы начинает изменять направление вектора скорости. Изменяется также угол наклона траектории θ.Это в свою очередь влияет на угол атаки.Исходя из сбалансированности моментных нагрузок синхронно с изменением угла наклона траектории продолжает изменяться угол тангажа. При этом угол атаки – постоянный. Угловые движения на малом интервале происходят с высокой частотой, т.е. имеют короткий период и называются краткопериодическими.



После того, как затухнут кратковременные колебания, становится заметным изменение скорости полета. В основном за счет составляющей Gsinθ. Изменение скорости ΔV влияет на приращение подъемной силы, и как следствие, на угол наклона траектории. Последнее изменяет скорость полета. При этом возникают угасающие колебания вектора скорости по величине и направлению.

Указанные движения характеризуются низкой частотой, угасают медленно, поэтому их называют долгопериодическими.

При рассмотрении динамики продольного движения нами не была учтена дополнительная подъемная сила, создаваемая отклонением руля высоты. Данное усилие направлено на уменьшение полной подъемной силы, поэтому ддля тяжелых самолетов наблюдается явление просадки – качественное отклонение угла наклона траектории с одновременным увеличением угла тангажа. Это происходит пока приращение подъемной силы не скомпенсирует составляющую подъемной силы за счет отклонения руля высоты.

На практике, долгопериодические колебания не возникают, т.к. своевременно гасятся пилотом, или автоматическими органами управления.

Передаточные функции и структурные схемы матмодели продольного движения .

Передаточной функцией называется изображение выходной величены, по изображению входной при нулевых начальных условиях.

Особенностью передаточных функций самолета, как объекта управления является то, что отношение выходной величины, по сравнению со входной берется с отрицательным знаком. Это связано с тем, что в аэродинамике принято в качестве положенительного отклонения органов управления считать отклонения, которые создают отрицательные приращения параметров движения самолета.

В операторной форме записи имеет вид:

Системе 6.10, которая описывает кратковременное движение самолета соответствуют решения:

(6.11)

(6.12)

Таким образом, можем записать передаточные функции, которые связывают угол атаки и угловую скорость по тангажу от отклонения руля высоты

(6.13)

Для того, чтобы передаточные функции имели стандартный вид, введем следующие обозначения:

, , , , ,

Учитывая эти соотношения перепишем 6.13:

(6.14)

Таким образом, передаточные функции по углу наклона траектории и по углу тангажа, в зависимости от отклонения руля высоты будут иметь следующий вид:

(6.17)

Одним из важнейших параметров, которые характеризуют продольное движение самолета является нормальная перегрузка. Перегрузка бывает: Нормальной (по оси ОУ), продольная (по оси ОХ) и боковая (по оси OZ). Вычисляется как сумма сил, действующих на самолет в определенном направлении, деленная на силу тяжести. Проекции на оси позволяют вычислить величину и соотношение ее с g.

- нормальная перегрузка,

Из первого уравнения сил системы 6.3 получим:

Используя выражения для перегрузки перепишем:

Для условий горизонтального полета ( :

Запишем структурную схему, которая соответствует передаточной функции:


-δ в M ω z ν ν α -
θ θ

Боковая сила Z a (δ н) создает момент крена М х (δ н). Соотношение моментов М х (δ н) и М х (β) характеризует прямую и обратную реакцию самолета на отклонение руля направления. В случае, если М х (δ н)по модулю больше, чем М х (β), самолет будет наклоняться в противоположную сторону разворота.

Принимая во внимание вышесказанное можем построить структурную схему для анализа бокового движения ЛА при отклонении руля направления.

-δ н М у ω y ψ ψ

β β
F z Ψ 1
Mx

ω y ω x

В режиме так называемого плоского разворота моменты крена компенсируются пилотом, либо соответствующей системой управления. Следует отметить, что при малом боковом движении самолет кренится, вместе с этим происходит наклон подъемной силы, что вызывает боковую проекцию Y a sinγ, которая начинает развивать большое боковое движение: самолет начинает скользить на наклоненное полукрыло, при этом увеличиваются соответствующие аэродинамические силы и моменты, и значит роль начинают играть так называемые "спиральные моменты": М у (ω х) и М у (ω z). Большое боковое движение целесообразно рассматривать при уже наклоненном самолете, или на примере динамики самолета при отклонении элеронов.

Реакция самолета на отклонение элеронов.

При отклонении элеронов возникает момент М х (δ э). Самолет начинает вращаться вокруг связанной оси ОХ, при этом появляется угол крена γ. Демпфирующий момент М х (ω х) противодействует вращению самолета. При наклоне самолета вследствии изменения угла крена возникает боковая сила Z g (Уа), которая является результирующей от силы веса и подъемной силы У­ а. Эта сила "разворачивает" вектор скорости, при этом начинает меняться путевой угол Ψ 1 , что приводит к возникновению угла скольжения β и соответствующей силы Z a (β), а также момента путевой статической устойчивости М у (β), который начинает разворачивать продольную ось самолета с угловой скоростью ω у. Вследствие такого движения начинает меняться угол рысканья ψ. Боковая сила Z a (β) направлена в противоположную сторону по отношению к силе Z g (Уа) поэтому она в некоторой степени уменьшает скорость изменения путевого угла Ψ 1 .

Сила Z a (β) также является причиной момента поперечной статической устойчивости. М х (β), который в свою очередь старается вывести самолет из крена, а угловая скорость ω у и соответствующий ей спиральный аэродинамический момент М х (ω у) стараются увеличить угол крена. Если М х (ω у) больше М х (β) – возникает ак называемая "спиральная неустойчивость", при которой угол крена после возвращения элеронов в нейтральное положение продолжает увеличиваться, что приводит к развороту самолета с возрастающей угловой скоростью.

Такой разворот называется координированным разворотом, при этом угол крена задается пилотом, либо с помощью системы автоматического управления. При этом в процессе разворота компенсируются возмущающие моменты по крену М х β и М х ωу, руль направления при этом компенсирует скольжение, то есть β, Z a (β), М у (β) = 0, при этом момент М у (β), который разворачивал продольную ось самолета, замещается моментом от руля направления М у (δ н), а боковая сила Z a (β), которая препятствовала изменению путевого угла замещается силой Z a (δ н). В случае координированного разворота скорость (маневренность) увеличивается, при єтом продольная ось самолета совпадает с вектором воздушной скорости и разворачивается синхронно с изменение угла Ψ 1 .

Анализ нелинейной системы дифференциальных уравнений ((2.1) - (2.7)) и их решение представляет определенные трудности. Поэтому первым шагом на пути их исследования является линеаризация связей между переменными, получение линейной математической модели самолета как объекта управления с последующим анализом динамических свойств.

Для получения линеаризованных уравнений движения необходимо установить зависимость сил и моментов от величин, и V а также от регулирующих факторов.

Сила тяги двигателя P зависит от внутренних параметров, а также от внешних условий, характеризуемых скоростью полета V, давлением p н и температурой T н в атмосфере.

Аэродинамические силы и моменты принято представлять в виде

где c x и c y - коэффициенты сопротивления и подъемной силы;

m z - коэффициент момента тангажа;

b A - длина хорды крыла;

S - площадь крыльев;

q - скоростной напор, вычисляемый по формуле:

Коэффициенты c x и c y являются функциями и V, а коэффициент m z функцией и в.

Для линеаризации уравнений (2.1) - (2.7) с учетом соотношений (2.8) - (2.9) воспользуемся известным методом представления нелинейных зависимостей в виде линейных отклонений относительно невозмущенного движения (в предположении малости этих отклонений). В качестве невозмущенного движения можно взять горизонтальный полет с постоянной скоростью. При этом будем пренебрегать влиянием нестационарности обтекания на аэродинамические характеристики самолета. Предположим, что невозмущенное движение самолета характеризуется параметрами V 0 ,H 0 , 0 , 0 , 0 ,не зависящими от времени. Пусть в некоторый момент времени вследствие возмущений, действующих на самолет, имеем:

где V, H - малые приращения.

Следовательно, возмущенное движение самолета состоит из невозмущенного движения и движения, характеризуемого малыми отклонениями. Такая трактовка возмущенного движения законна до тех пор, пока приращения V, и H остаются малыми, что имеет место для устойчивых систем. Так как одним из основных назначений системы управления является обеспечение устойчивости режима полета, то законность использования линеаризованных уравнений можно считать обеспеченной.

Разлагая силы P, X, Y и момент M z в ряды Тейлора по малым приращениям и ограничиваясь линейными членами приращений, вместо уравнений (2.1) - (2.5) получим:



где члены с верхними индексами обозначают частные производные по соответствующим переменным в окрестности невозмущенного движения.

Предположим, что невозмущенный полет является горизонтальным, тогда 0 =0. Для частных производных, входящих в уравнения (2.10), можно с учетом (2.8) написать:

в этих выражениях М - число Маха.

В целях дальнейших преобразований воспользуемся соотношениями:

или, если учесть, что

где a - скорость звука, то

Кроме того, воспользуемся зависимостью между высотой H и параметрами атмосферы и T H

Градиент температуры,

R - газовая постоянная.

Пользуясь выражением (2.13), найдем:

Следовательно

В целях сокращения записи введем безразмерные величины:

где - аэродинамическая постоянная времени самолета, а также вместо приращений, и будем записывать, и, придавая последним величинам смысл тех же приращений.

Воспользовавшись соотношениями (2.11) - (2.16), приведем уравнения (2.10) к виду:

r - радиус инерции самолета.

Система дифференциальных уравнений (2.17) является линейной математической моделью продольного движения самолета.

Динамика самолета в продольной плоскости характеризуется двумя составляющими: короткопериодической и длиннопериодической . В короткопериодическом движении очень резкие изменения претерпевают параметры и, характеризующие движение самолета относительно центра масс. При длиннопериодическом движении изменяются параметры и V, характеризующие положение центра масс самолета. Поэтому в уравнениях (2.17) можно положить = 0, считая, что за время изменения угловых координат и скорость полета практически не изменяется . Другими словами продольная ось самолета может совершать колебания относительно вектора скорости центра масс.

Если учесть сделанные замечания и принять, что равновесие продольных сил при возмущении по и не нарушается, то вместо системы (2.17) получим для случая горизонтального полета.

Выделение уравнений продольного движения из полной системы уравнений продольного движения самолета.

Наличие у ЛА плоскости материальной симметрии позволяет разделить его пространственное движение на продольное и боковое. К продольному движению относится движение ЛА в вертикальной плоскости при отсутствии крена и скольжения, при нейтральном положении руля и элеронов. При этом происходят два поступательных и одно вращательное движение. Поступательное движение реализуются вдоль вектора скорости и по нормали, вращательное – вокруг оси Z. Продольное движение характеризуется углом атаки α, углом наклона траектории θ, углом тангажа, скоростью полета͵ высотой полета͵ а также положением руля высоты и величиной и направлением в вертикальной плоскости тяги ДУ.

Система уравнений продольного движения самолета.

Замкнутая система, описывающая продольное движение самолета может быть выделœена из полной системы уравнений, при условии, что параметры бокового движения, а также углы отклонения органов управления креном и рысканьем равны 0.

Соотношение α = ν – θ оплучено из первого геометрического уравнения после его преобразования.

Последнее уравнение системы 6.1 не влияет на остальные и может быть решено отдельно. 6.1 – нелинœейная система, т.к. содержит в себе произведения переменных и тригонометрических функций, выражения для аэродинамических усилий.

Для получения упрощенной линœейной модели продольного движения самолета͵ крайне важно ввести определœенные допущения и провести процедуру линœеаризации. С целью обоснования дополнительных допущений, нам крайне важно рассмотреть динамику продольного движения самолета при ступенчатом отклонении руля высоты.

Реакция самолета на ступенчатое отклонение руля высоты. Разделœение продольного движения на долго- и кратковременное.

При ступенчатом отклонении δ в возникает момент М z (δ в), который вращает относительно оси Z со скоростью ω z . При этом происходит изменение угла тангажа и атаки. При увеличении угла атаки возникает приращение подъемной силы и соответствующий этому момент продольной статической устойчивости М z (Δα),который противодейсвует моменту М z (δ в). По истечению вращения, на определœенном угле атаки он его компенсирует.

Изменение угла атаки после уравновешивания моментов М z (Δα) и М z (δ в) останавливается, но, т.к. самолет обладает определœенными инœерциальными свойствами, ᴛ.ᴇ. обладает моментом инœерции I z относительно оси ОZ, то установление угла атаки носит колебательный характер.

Угловые колебания самолета вокруг оси ОZ будут демпфировать ся с помощью собственного момента аэродинамического демпфирования М z (ω z). Приращение подъемной силы начинает изменять направление вектора скорости. Изменяется также угол наклона траектории θ.Это в свою очередь влияет на угол атаки.Исходя из сбалансированности моментных нагрузок синхронно с изменением угла наклона траектории продолжает изменяться угол тангажа. При этом угол атаки – постоянный. Угловые движения на малом интервале происходят с высокой частотой, ᴛ.ᴇ. имеют короткий период и называются краткопериодическими.

После того, как затухнут кратковременные колебания, становится заметным изменение скорости полета. В основном за счет составляющей Gsinθ. Изменение скорости ΔV влияет на приращение подъемной силы, и как следствие, на угол наклона траектории. Последнее изменяет скорость полета. При этом возникают угасающие колебания вектора скорости по величинœе и направлению.

Указанные движения характеризуются низкой частотой, угасают медленно, в связи с этим их называют долгопериодическими.

При рассмотрении динамики продольного движения нами не была учтена дополнительная подъемная сила, создаваемая отклонением руля высоты. Данное усилие направлено на уменьшение полной подъемной силы, в связи с этим ддля тяжелых самолетов наблюдается явление просадки – качественное отклонение угла наклона траектории с одновременным увеличением угла тангажа. Это происходит пока приращение подъемной силы не скомпенсирует составляющую подъемной силы за счет отклонения руля высоты.

На практике, долгопериодические колебания не возникают, т.к. своевременно гасятся пилотом, или автоматическими органами управления.

Передаточные функции и структурные схемы матмодели продольного движения .

Передаточной функцией принято называть изображение выходной величены, по изображению входной при нулевых начальных условиях.

Особенностью передаточных функций самолета͵ как объекта управления является то, что отношение выходной величины, по сравнению со входной берется с отрицательным знаком. Это связано с тем, что в аэродинамике принято в качестве положенительного отклонения органов управления считать отклонения, которые создают отрицательные приращения параметров движения самолета.

В операторной форме записи имеет вид:

Системе 6.10, которая описывает кратковременное движение самолета соответствуют решения:

(6.11)

(6.12)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можем записать передаточные функции, которые связывают угол атаки и угловую скорость по тангажу от отклонения руля высоты

(6.13)

Для того, чтобы передаточные функции имели стандартный вид, введем следующие обозначения:

, , , , ,

Учитывая эти соотношения перепишем 6.13:

(6.14)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, передаточные функции по углу наклона траектории и по углу тангажа, в зависимости от отклонения руля высоты будут иметь следующий вид:

(6.17)

Одним из важнейших параметров, которые характеризуют продольное движение самолета является нормальная перегрузка. Перегрузка бывает: Нормальной (по оси ОУ), продольная (по оси ОХ) и боковая (по оси OZ). Вычисляется как сумма сил, действующих на самолет в определœенном направлении, делœенная на силу тяжести. Проекции на оси позволяют вычислить величину и соотношение ее с g.

- нормальная перегрузка,

Из первого уравнения сил системы 6.3 получим:

Используя выражения для перегрузки перепишем:

Для условий горизонтального полета ( :

Запишем структурную схему, которая соответствует передаточной функции:

-δ в M ω z ν ν α -
θ θ

Боковая сила Z a (δ н) создает момент крена М х (δ н). Соотношение моментов М х (δ н) и М х (β) характеризует прямую и обратную реакцию самолета на отклонение руля направления. В случае, если М х (δ н)по модулю больше, чем М х (β), самолет будет наклоняться в противоположную сторону разворота.

Принимая во внимание вышесказанное можем построить структурную схему для анализа бокового движения ЛА при отклонении руля направления.

-δ н М у ω y ψ ψ
β β
F z Ψ 1
Mx
ω y ω x

В режиме так называемого плоского разворота моменты крена компенсируются пилотом, либо соответствующей системой управления. Следует отметить, что при малом боковом движении самолет кренится, вместе с этим происходит наклон подъемной силы, что вызывает боковую проекцию Y a sinγ, которая начинает развивать большое боковое движение: самолет начинает скользить на наклоненное полукрыло, при этом увеличиваются соответствующие аэродинамические силы и моменты, и значит роль начинают играть так называемые "спиральные моменты": М у (ω х) и М у (ω z). Большое боковое движение целœесообразно рассматривать при уже наклоненном самолете, или на примере динамики самолета при отклонении элеронов.

Реакция самолета на отклонение элеронов.

При отклонении элеронов возникает момент М х (δ э). Самолет начинает вращаться вокруг связанной оси ОХ, при этом появляется угол крена γ. Демпфирующий момент М х (ω х) противодействует вращению самолета. При наклоне самолета вследствии изменения угла крена возникает боковая сила Z g (Уа), которая является результирующей от силы веса и подъемной силы У­ а. Эта сила "разворачивает" вектор скорости, при этом начинает меняться путевой угол Ψ 1 , что приводит к возникновению угла скольжения β и соответствующей силы Z a (β), а также момента путевой статической устойчивости М у (β), который начинает разворачивать продольную ось самолета с угловой скоростью ω у. Вследствие такого движения начинает меняться угол рысканья ψ. Боковая сила Z a (β) направлена в противоположную сторону по отношению к силе Z g (Уа) в связи с этим она в некоторой степени уменьшает скорость изменения путевого угла Ψ 1 .

Сила Z a (β) также является причиной момента поперечной статической устойчивости. М х (β), который в свою очередь старается вывести самолет из крена, а угловая скорость ω у и соответствующий ей спиральный аэродинамический момент М х (ω у) стараются увеличить угол крена. В случае если М х (ω у) больше М х (β) – возникает ак называемая "спиральная неустойчивость", при которой угол крена после возвращения элеронов в нейтральное положение продолжает увеличиваться, что приводит к развороту самолета с возрастающей угловой скоростью.

Такой разворот принято называть координированным разворотом, при этом угол крена задается пилотом, либо с помощью системы автоматического управления. При этом в процессе разворота компенсируются возмущающие моменты по крену М х β и М х ωу, руль направления при этом компенсирует скольжение, то есть β, Z a (β), М у (β) = 0, при этом момент М у (β), который разворачивал продольную ось самолета͵ замещается моментом от руля направления М у (δ н), а боковая сила Z a (β), которая препятствовала изменению путевого угла замещается силой Z a (δ н). В случае координированного разворота скорость (маневренность) увеличивается, при єтом продольная ось самолета совпадает с вектором воздушной скорости и разворачивается синхронно с изменение угла Ψ 1 .