Какие места в самолете самые безопасные. Особенности выбора удобных для себя мест в салоне самолета Название деталей у самолета

Изобретение самолета позволило не только осуществить древнейшую мечту человечества - покорить небо, но и создать самый быстрый вид транспорта. В отличие от воздушных шаров и дирижаблей, самолеты мало зависят от капризов погоды, способны преодолевать большие расстояния на высокой скорости. Составные части самолета состоят из следующих конструктивных групп: крыла, фюзеляжа, оперения, взлетно-посадочных устройств, силовой установки, управляющих систем, различного оборудования.

Принцип действия

Самолет - летательный аппарат (ЛА) тяжелее воздуха, оборудованный силовой установкой. При помощи этой важнейшей части самолета создается необходимая для осуществления полета тяга - действующая (движущая) сила, которую развивает на земле или в полете мотор (воздушный винт или реактивный двигатель). Если винт расположен перед двигателем, он называется тянущим, а если сзади - толкающим. Таким образом, двигатель создает поступательное движение самолета относительно окружающей среды (воздуха). Соответственно, относительно воздуха движется и крыло, которое создает подъемную силу в результате этого поступательного движения. Поэтому аппарат может держаться в воздухе только при наличии определенной скорости полета.

Как называются части самолета

Корпус состоит из следующих основных частей:

  • Фюзеляж - это главный корпус самолета, связывающий в единое целое крылья (крыло), оперения, силовую систему, шасси и другие составляющие. В фюзеляже размещаются экипаж, пассажиры (в гражданской авиации), оборудование, полезная нагрузка. Также может размещаться (не всегда) топливо, шасси, моторы и т. д.
  • Двигатели используются для приведения в движение ЛА.
  • Крыло - рабочая поверхность, призванная создавать подъемную силу.
  • Вертикальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно вертикальной оси.
  • Горизонтальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно горизонтальной оси.

Крылья и фюзеляж

Основная часть конструкции самолета - крыло. Оно создает условия для выполнения главного требования для возможности полета - наличие подъемной силы. Крыло крепится к корпусу (фюзеляжу), который может иметь ту или иную форму, но по возможности с минимальным аэродинамическим сопротивлением. Для этого ему предоставляют удобно обтекаемую каплеобразную форму.

Передняя часть самолета служит для размещения кабины пилотов и радиолокационных систем. В задней части находится так называемое хвостовое оперение. Оно служит для обеспечения управляемости во время полета.

Конструкция оперения

Рассмотрим среднестатистический самолет, хвостовая часть которого выполнена по классической схеме, характерной для большинства военных и гражданских моделей. В этом случае горизонтальное оперение будет включать неподвижную часть - стабилизатор (от латинского Stabilis, устойчивый) и подвижную - руль высоты.

Стабилизатор служит для придания устойчивости ЛА относительно поперечной оси. Если нос летательного аппарата опустится, то, соответственно, хвостовая часть фюзеляжа вместе с оперением поднимется вверх. В этом случае давление воздуха на верхней поверхности стабилизатора увеличится. Создаваемое давление вернет стабилизатор (соответственно, и фюзеляж) в исходное положение. При подъеме носа фюзеляжа вверх давление потока воздуха увеличится на нижней поверхности стабилизатора, и он снова вернется в исходное положение. Таким образом, обеспечивается автоматическая (без вмешательства пилота) устойчивость ЛА в его продольной плоскости относительно поперечной оси.

Задняя часть самолета также включает вертикальное оперение. Аналогично горизонтальному, оно состоит из неподвижной части - киля, и подвижной - руля направления. Киль придает устойчивость движения самолету относительно его вертикальной оси в горизонтальной плоскости. Принцип действия киля подобен действию стабилизатора - при отклонении носа влево киль отклоняется вправо, давление на его правой плоскости увеличивается и возвращает киль (и весь фюзеляж) в прежнее положение.

Таким образом, относительно двух осей устойчивость полета обеспечивается оперением. Но осталась еще одна ось - продольная. Для предоставления автоматической устойчивости движения относительно этой оси (в поперечной плоскости) консоли крыла планера размещают не горизонтально, а под некоторым углом относительно друг друга так, что концы консолей отклонены вверх. Такое размещение напоминает букву «V».

Системы управления

Рулевые поверхности - важные части самолета, предназначенные для управления К ним относятся элероны, рули направления и высоты. Управление обеспечивается относительно тех же трех осей в тех же трех плоскостях.

Руль высоты - это подвижная задняя часть стабилизатора. Если стабилизатор состоит из двух консолей, то соответственно есть и два руля высоты, которые отклоняются вниз или вверх, оба синхронно. С его помощью пилот может менять высоту полета летательного аппарата.

Руль направления - это подвижная задняя часть киля. При его отклонены в ту или иную сторону на нем возникает аэродинамическая сила, которая вращает самолет относительно вертикальной оси, проходящей через центр масс, в противоположную сторону от направления отклонения руля. Вращение происходит до тех пор, пока пилот не вернет руль в нейтральное (не отклоненное положение), и ЛА будет осуществлять движение уже в новом направлении.

Элероны (от франц. Aile, крыло) - основные части самолета, представляющие собой подвижные части консолей крыла. Служат для управления самолетом относительно продольной оси (в поперечной плоскости). Так как консолей крыла две, то и элеронов также два. Они работают синхронно, но, в отличие от рулей высоты, отклоняются не в одну сторону, а в разные. Если один элерон отклоняется вверх, то другой вниз. На консоли крыла, где элерон отклонен вверх, подъемная сила уменьшается, а где вниз - увеличивается. И фюзеляж ЛА вращается в сторону поднятого элерона.

Двигатели

Все самолеты оснащаются силовой установкой, позволяющей развить скорость, и, следовательно, обеспечить возникновение подъемной силы. Двигатели могут размещаться в задней части самолета (характерно для реактивных ЛА), спереди (легкомоторные аппараты) и на крыльях (гражданские самолеты, транспортники, бомбардировщики).

Они подразделяются на:

  • Реактивные - турбореактивные, пульсирующие, двухконтурные, прямоточные.
  • Винтовые - поршневые (винтомоторные), турбовинтовые.
  • Ракетные - жидкостные, твердотопливные.

Прочие системы

Безусловно, другие части самолета также важны. Шасси позволяют взлетать и садиться с оборудованных аэродромов. Существуют самолеты-амфибии, где вместо шасси используются специальные поплавки - они позволяют осуществлять взлет и посадку в любом месте, где есть водоем (море, река, озеро). Известны модели легкомоторных самолетов, оснащенных лыжами, для эксплуатации в районах с устойчивым снежным покровом.

Напичканы электронным оборудованием, устройствами связи и передачи информации. В военной авиации используются сложные системы вооружения, обнаружения целей и подавления сигналов.

Классификация

По назначению самолеты делятся на две большие группы: гражданские и военные. Основные части пассажирского самолета отличаются наличием оборудованного салона для пассажиров, занимающего большую часть фюзеляжа. Отличительной чертой являются иллюминаторы по бокам корпуса.

Гражданские самолеты подразделяются на:

  • Пассажирские - местных авиалиний, магистральные ближние (дальность меньше 2000 км), средние (дальность меньше 4000 км), дальние (дальность меньше 9000 км) и межконтинентальные (дальность более 11 000 км).
  • Грузовые - легкие (масса груза до 10 т), средние (масса груза до 40 т) и тяжелые (масса груза более 40 т).
  • Специального назначения - санитарные, сельскохозяйственные, разведывательные (ледовая разведка, рыборазведка), противопожарные, для аэрофотосъемки.
  • Учебные.

В отличие от гражданских моделей, части военного самолета не имеют комфортабельного салона с иллюминаторами. Основную часть фюзеляжа занимают системы вооружения, оборудование для разведки, связи, двигатели и другие агрегаты.

По назначению современные военные самолеты (учитывая боевые задачи, которые они выполняют), можно разделить на следующие типы: истребители, штурмовики, бомбардировщики (ракетоносцы), разведчики, военно-транспортные, специальные и вспомогательного назначения.

Устройство самолетов

Устройство летательных аппаратов зависит от аэродинамической схемы, по которой они выполнены. Аэродинамическая схема характеризуется количеством основных элементов и расположением несущих поверхностей. Если носовая часть самолета у большинства моделей похожа, то расположение и геометрия крыльев и хвостовой части могут сильно разниться.

Различают следующие схемы устройства ЛА:

  • «Классическая».
  • «Летающее крыло».
  • «Утка».
  • «Бесхвостка».
  • «Тандем».
  • Конвертируемая схема.
  • Комбинированная схема.

Самолеты, выполненные по классической схеме

Рассмотрим основные части самолета и их назначение. Классическая (нормальная) компоновка узлов и агрегатов характерна для большинства аппаратов мира, будь-то военных либо гражданских. Главный элемент - крыло - работает в чистом невозмущенном потоке, который плавно обтекает крыло и создает определенную подъемную силу.

Носовая часть самолета является сокращенной, что приводит к уменьшению требуемой площади (а следовательно, и массы) вертикального оперения. Это потому, что носовая часть фюзеляжа вызывает дестабилизирующий путевой момент относительно вертикальной оси самолета. Сокращение носовой части фюзеляжа улучшает обзор передней полусферы.

Недостатками нормальной схемы являются:

  • Работа горизонтального оперения (ГО) в скошенном и возмущенном крылом потоке значительно снижает его эффективность, что вызывает необходимость применения оперения большей площади (а, следовательно, и массы).
  • Для обеспечения устойчивости полета вертикальное оперение (ВО) должно создавать негативную подъемную силу, то есть направленную вниз. Это снижает суммарный КПД самолета: из величины подъемной силы, которую создает крыло, надо отнять силу, которая создается на ГО. Для нейтрализации этого явления следует применять крыло увеличенной площади (а, следовательно, и массы).

Устройство самолета по схеме «утка»

При данной конструкции основные части самолета размещаются иначе, чем в «классических» моделях. Прежде всего, изменения коснулись компановки горизонтального оперения. Оно располагается перед крылом. По этой схеме построили свой ​​первый самолет братья Райт.

Преимущества:

  • Вертикальное оперение работает в невозмущенном потоке, что повышает его эффективность.
  • Для обеспечения устойчивости полета оперение создает положительную подъемную силу, то есть она добавляется к подъемной силе крыла. Это позволяет уменьшить его площадь и, соответственно, массу.
  • Естественная «противоштопорная» защита: возможность перевода крыльев на закритические углы атаки для «уток» исключена. Стабилизатор устанавливается так, что он получает больший угол атаки по сравнению с крылом.
  • Перемещение фокуса самолета назад при увеличении скорости при схеме «утка» происходит в меньшей степени, чем при классической компоновке. Это приводит к меньшим изменениям степени продольной статической устойчивости самолета, в свою очередь, упрощает характеристики его управления.

Недостатки схемы «утка»:

  • При срыве потока на оперениях происходит не только выход самолета на меньшие углы атаки, но и его «проседания» вследствие уменьшения его общей подъемной силы. Это особенно опасно в режимах взлета и посадки из-за близости земли.
  • Наличие в носовой части фюзеляжа механизмов оперения ухудшает обзор нижней полусферы.
  • Для уменьшения площади переднего ГО длина носовой части фюзеляжа делается значительной. Это приводит к увеличению дестабилизирующего момента относительно вертикальной оси, и, соответственно, к увеличению площади и массы конструкции.

Самолеты, выполненные по схеме «бесхвостка»

В моделях данного типа нет важной, привычной части самолета. Фото летательных аппаратов «бесхвосток» («Конкорд», «Мираж», «Вулкан») показывает, что у них отсутствует горизонтальное оперение. Основными преимуществами такой схемы являются:

  • Уменьшение лобового аэродинамического сопротивления, что особенно важно для самолетов с большой скоростью, в частности, крейсерской. При этом уменьшаются затраты топлива.
  • Большая жесткость крыла на кручение, что улучшает его характеристики аэроупругости, достигаются высокие характеристики маневренности.

Недостатки:

  • Для балансировки на некоторых режимах полета часть средств механизации задней кромки и рулевых поверхностей надо отклонять вверх, что уменьшает общую подъемную силу самолета.
  • Совмещение органов управления ЛА относительно горизонтальной и продольной осей (вследствие отсутствия руля высоты) ухудшает характеристики его управляемости. Отсутствие специализированного оперения заставляет рулевые поверхности находятся на задней кромке крыла, выполнять (при необходимости) обязанности и элеронов, и рулей высоты. Эти рулевые поверхности называются элевоны.
  • Использование части средств механизации для балансировки самолета ухудшает его взлетно-посадочные характеристики.

«Летающее крыло»

При данной схеме фактически нет такой части самолета, как фюзеляж. Все объемы, необходимые для размещения экипажа, полезной нагрузки, двигателей, топлива, оборудования находятся в середине крыла. Такая схема имеет следующие преимущества:

  • Наименьшее аэродинамическое сопротивление.
  • Наименьшая масса конструкции. В этом случае вся масса приходится на крыло.
  • Так как продольные размеры самолета небольшие (из-за отсутствия фюзеляжа), дестабилизирующий момент относительно его вертикальной оси является незначительным. Это позволяет конструкторам либо существенно уменьшить площадь ВО, либо вообще отказаться от него (у птиц, как известно, вертикальное оперение отсутствует).

К недостаткам относится сложность обеспечения устойчивости полета ЛА.

«Тандем»

Схема «тандем», когда два крыла располагаются один за другим, применяется нечасто. Такое решение используется для увеличения площади крыла при тех же значениях его размаха и длины фюзеляжа. Это уменьшает удельную нагрузку на крыло. Недостатками такой схемы является большое увеличение момента инерции, особенно в отношении поперечной оси самолета. Кроме того, при увеличении скорости полета изменяются характеристики продольной балансировки самолета. Рулевые поверхности на таких самолетах могут располагаться как непосредственно на крыльях, так и на оперении.

Комбинированная схема

В этом случае составные части самолета могут комбинироваться с использованием различных конструкционных схем. Например, горизонтальное оперение предусмотрено и в носовой, и в хвостовой части фюзеляжа. На них может быть использовано так называемое непосредственное управление подъемной силой.

При этом носовое горизонтальное оперение совместно с закрылками создают дополнительную подъемную силу. Момент тангажа, который возникает в этом случае, будет направлен на увеличение угла атаки (нос самолета поднимается). Для парирования этого момента хвостовое оперение должно создать момент на уменьшение угла атаки (нос самолета опускается). Для этого сила на хвостовую часть должна быть направлена ​​также вверх. То есть происходит приращение подъемной силы на носовом ГО, на крыле и на хвостовом ГО (а следовательно, и на всем самолете) без поворота его в продольной плоскости. В этом случае самолет просто поднимается без всякой эволюции относительно своего центра масс. И наоборот, при такой аэродинамической компоновке самолета он может осуществлять эволюции относительно центра масс в продольной плоскости без изменения траектории своего полета.

Возможность осуществлять такие маневры значительно улучшают тактико-технические характеристики маневренных самолетов. Особенно в сочетании с системой непосредственного управления боковой силой, для осуществления которой самолет должен иметь не только хвостовое, а еще и носовое продольное оперение.

Конвертируемая схема

Построенного по конвертируемой схеме, отличается наличием дестабилизатора в носовой части фюзеляжа. Функцией дестабилизаторов является уменьшение в определенных пределах, а то и полное исключение смещения назад аэродинамического фокуса самолета на сверхзвуковых режимах полета. Это увеличивает маневренные характеристики ЛА (что важно для истребителя) и увеличивает дальность или уменьшает расход топлива (это важно для сверхзвукового пассажирского самолета).

Дестабилизаторы могут также использоваться на режимах взлета/посадки для компенсации момента пикирования, который вызывается отклонением взлетно-посадочной механизации (закрылков, щитков) или носовой части фюзеляжа. На дозвуковых режимах полета дестабилизатор скрывается в середине фюзеляжа или устанавливается в режим работы флюгера (свободно ориентируется по потоку).

Самолёт – воздушное судно, без которого сегодня представить перемещение людей и грузов на большие расстояния невозможно. Разработка конструкции современного самолета, а также создание отдельных его элементов представляется важной и ответственной задачей. К этой работе допускают только высококвалифицированных инженеров, профильных специалистов, так как небольшая ошибка в расчётах или производственный брак приведут к фатальным последствиям для пилотов и пассажиров. Не представляет секрет, что любой самолёт имеет фюзеляж, несущие крылья, силовой агрегат, систему разнонаправленного управления и взлетно-посадочные устройства.

Ниже изложенная информация об особенностях устройства составных частей самолёта будет интересна для взрослых и детей, занимающихся конструкторской разработкой моделей летательных аппаратов, а также отдельных элементов.

Фюзеляж самолёта

Основной частью самолета является фюзеляж. На нем закрепляются остальные конструктивные элементы: крылья, хвост с оперением, шасси, а внутри размещается кабина управления, технические коммуникации, пассажиры, грузы и экипаж воздушного судна. Корпус самолёта собирается из продольных и поперечных силовых элементов, с последующей обшивкой металлом (в легкомоторных версиях – фанерой или пластиком).

Требования при проектировании фюзеляжа самолёта предъявляется к весу конструкции и максимальным характеристикам прочности. Добиться этого позволяет использование следующих принципов:

  1. Корпус фюзеляжа самолёта выполняется в форме, снижающей лобовое сопротивление воздушным массам и способствующей возникновению подъемной силы. Объем, габариты самолёта должны быть пропорционально взвешены;
  2. При проектировании предусматривают максимально плотную компоновку обшивки и силовых элементов корпуса для увеличения полезного объема фюзеляжа;
  3. Сосредотачивают внимание на простоте и надежности крепления крыловых сегментов, взлётно-посадочного оборудования, силовой установки;
  4. Места крепления грузов, размещения пассажиров, расходных материалов должны обеспечивать надёжное крепление и баланс самолёта при различных условиях эксплуатации;

  1. Место размещения экипажа должно предоставлять условия комфортного управления самолётом, доступ к основным приборам навигации и управления при экстремальных ситуациях;
  2. В период обслуживания самолёта предусмотрена возможность беспрепятственно провести диагностику и ремонт вышедших из строя узлов и агрегатов.

Прочность корпуса самолёта обязана обеспечивать противодействие нагрузкам при различных полётных условиях, в том числе:

  • нагрузки в местах крепления основных элементов (крылья, хвост, шасси) в режимах взлёта и приземления;
  • в полётный период выдерживать аэродинамическую нагрузку, с учётом инерционных сил веса самолёта, работы агрегатов, функционирования оборудования;
  • перепады давления в герметически ограниченных отделах самолёта, постоянно возникающие при лётных перегрузках.

К основным типам конструкции корпуса самолёта относят плоский, одно,- и двухэтажный, широкий и узкий фюзеляж. Положительно зарекомендовали себя и используются фюзеляжи балочного типа, включающие варианты компоновки, которые носят название:

  1. Обшивочные – конструкция исключает продольно расположенные сегменты, усиление происходит за счёт шпангоутов;
  2. Лонжеронные – элемент имеет значительные габариты, и непосредственная нагрузка ложится именно на него;
  3. Стрингерные – имеют оригинальную форму, площадь и сечение меньше, чем в лонжеронном варианте.

Важно! Равномерное распределение нагрузки на все части самолёта осуществляется за счёт внутреннего каркаса фюзеляжа, который представлен соединением различных силовых элементов по всей длине конструкции.

Конструкция крыла

Крыло – один из основных конструктивных элементов самолёта, обеспечивающий создание подъёмной силы для полёта и маневрирования в воздушных массах. Крылья используют для размещения взлётно-посадочных устройств, силового агрегата, топлива и навесного оборудования. От правильного сочетания веса, прочности, жёсткости конструкции, аэродинамики, качества изготовления зависят эксплуатационные и лётные характеристики самолёта.

Основными частями крыла называется следующий перечень элементов:

  1. Корпус, сформированный из лонжеронов, стрингеров, нервюров, обшивки;
  2. Предкрылки и закрылки, обеспечивающие плавный взлёт и посадку;
  3. Интерцепторы и элероны – посредством них осуществляется управление самолётом в воздушном пространстве;
  4. Щитки тормозные, предназначенные для уменьшения скорости движения во время посадки;
  5. Пилоны, необходимые для крепления силовых агрегатов.

Конструктивно-силовая схема крыла (наличие и расположение деталей при нагрузочном воздействии) должна обеспечивать устойчивое противодействие силам кручения, сдвига и изгиба изделия. К ней относятся продольные, поперечные элементы, а также внешняя обшивка.

  1. К поперечным элементам относят нервюры;
  2. Продольный элемент представлен лонжеронами, которые могут быть в виде монолитной балки и представлять ферму. Располагаются по всему объёму внутренней части крыла. Участвуют в придании жёсткости конструкции, при воздействии сгибающей и поперечной силы на всех этапах полёта;
  3. Стрингер также относят к продольным элементам. Его размещение – вдоль крыла по всему размаху. Работает как компенсатор осевого напряжения нагрузок изгиба крыла;
  4. Нервюры – элемент поперечного размещения. В конструкции представлены фермами и тонкими балками. Придаёт профиль крылу. Обеспечивает жесткость поверхности при распределении равномерной нагрузки во время создания полётной воздушной подушки, а также крепления силового агрегата;
  5. Обшивка придаёт форму крылу, обеспечивая максимальную аэродинамическую подъёмную силу. Вместе с другими элементами конструкции увеличивает жёсткость крыла и компенсирует действие внешних нагрузок.

Классификация крыльев самолёта осуществляется в зависимости от конструктивных особенностей и степени работы наружной обшивки, в том числе:

  1. Лонжеронного типа. Характеризуются незначительной толщиной обшивки, образующей замкнутый контур с поверхностью лонжеронов.
  2. Моноблочного типа. Основная внешняя нагрузка распределяется по поверхности толстой обшивки, закреплённой массивным набором стрингеров. Обшивка может быть монолитной или состоять из нескольких слоёв.

Важно! Стыковка частей крыльев, последующее их крепление должны обеспечивать передачу, распределение изгибающего и крутящего моментов, возникающих при различных режимах эксплуатации.

Авиадвигатели

Благодаря постоянному совершенствованию авиационных силовых агрегатов продолжается развитие современного самолётостроения. Первые полёты не могли быть длительными и совершались исключительно с одним пилотом именно потому, что не существовало мощных двигателей, способных развить необходимую тяговую силу. За весь прошедший период авиацией использовались следующие типы двигателей самолёта:

  1. Паровые. Принцип работы заключался в преобразовании энергии пара в поступательное движение, передающееся на винт самолёта. Из-за низкого коэффициента полезного действия использовался непродолжительное время на первых авиамоделях;
  2. Поршневые – стандартные двигатели с внутренним сгоранием топлива и передачей крутящего момента на винты. Доступность изготовления из современных материалов позволяет их использование до настоящего времени на отдельных моделях самолётов. КПД представлен не более 55.0%, но высокая надежность и неприхотливость в обслуживании делают двигатель привлекательным;

  1. Реактивные. Принцип действия основан на преобразовании энергии интенсивного сгорания авиационного топлива в необходимую для полёта тягу. Сегодня такой тип двигателей наиболее востребован в авиастроительстве;
  2. Газотурбинные. Работают по принципу пограничного нагрева и сжатия газа сгорания топлива, направленного на вращение турбинного агрегата. Получили широкое распространение в авиации военного назначения. Используются в самолётах типа Су-27, МиГ-29, F-22, F-35;
  3. Турбовинтовые. Один из вариантов газотурбинных двигателей. Но полученная при работе энергия преобразовывается в приводную для винта самолёта. Небольшая её часть используется для образования реактивной толкающей струи. Применяют, в основном, в гражданской авиации;
  4. Турбовентиляторные. Характеризуются высоким КПД. Применяемая технология нагнетания дополнительного воздуха для полного сгорания топлива обеспечивает максимальную эффективность работы и высокую экологическую безопасность. Такие двигатели нашли своё применение при создании больших авиалайнеров.

Важно! Перечень двигателей, разрабатываемых авиаконструкторами, вышеуказанным перечнем не ограничивается. В разное время неоднократно принимались попытки создавать различные вариации силовых агрегатов. В прошлом веке даже велись работы по конструированию атомных двигателей в интересах авиации. Опытные образцы были опробованы в СССР (ТУ-95, АН-22) и США (Convair NB-36H), но были сняты с испытания в связи с высокой экологической опасностью при авиационных катастрофах.

Органы управления и сигнализации

Комплекс бортового оборудования, командные и исполнительные устройства самолёта называют органами управления. Команды подаются из пилотной кабины, а выполняются элементами плоскости крыла, оперением хвоста. На разных типах самолётов используются различные типы систем управления: ручная, полуавтоматическая и полностью автоматизированная.

Органы управления, независимо от типа системы управления, разделяют следующим образом:

  1. Основное управление, включающее в себя действия, отвечающие за регулировку лётных режимов, восстановление продольного баланса самолёта в заранее заданных параметров, они включают:
  • рычаги, непосредственно управляемые пилотом (штурвал, рули высоты, горизонта, командные панели);
  • коммуникации для соединения управляющих рычагов с элементами исполнительных механизмов;
  • непосредственные исполняющие устройства (элероны, стабилизаторы, сполерные системы, закрылки, предкрылки).
  1. Дополнительное управление, используемое при взлётном или посадочном режимах.

При применении ручного или полуавтоматического управления воздушным судном пилота можно считать неотъемлемой частью системы. Только он может проводить сбор и анализ информации о положении самолёта, нагрузочных показателях, соответствии направления полёта с плановыми данными, принимать соответствующее обстановке решение.

Для получения объективной информации о лётной обстановке, состоянии узлов самолёта пилот использует группы приборов, назовем основные:

  1. Пилотажные и используемые для навигационных целей. Определяют координаты, горизонтальное и вертикальное положение, скорость, линейные отклонения. Контролируют угол атаки по отношению к встречному потоку воздуха, работу гироскопических устройств и многие не менее значимые параметры полёта. На современных моделях самолётов объединены в единый пилотажно-навигационный комплекс;
  2. Для контроля работы силового агрегата. Обеспечивают пилота информацией о температуре и давлении масла и авиационного топлива, расход рабочей смеси, количество оборотов коленчатых валов, вибрационный показатель (тахометры, датчики, термометры и подобное);
  3. Для наблюдения за функционированием дополнительного оборудования и авиационных систем. Включают в себя комплекс измерительных приборов, элементы которого размещены практически во всех конструктивных частях самолёта (манометры, указателя расходования воздуха, перепада давления в герметических закрытых кабинах, положения закрылков, стабилизирующих устройств и тому подобное);
  4. Для оценки состояния окружающей атмосферы. Основными измеряемыми параметрами являются температура наружного воздуха, состояние атмосферного давления, влажность, скоростные показатели перемещения воздушных масс. Используются специальные барометры и другие адаптированные измерительные приборы.

Важно! Измерительные приборы, используемые для мониторинга состояния машины и внешней среды, специально разработаны и адаптированы для сложных условий эксплуатации.

Взлётно-посадочные системы 2280

Взлёт и посадку считают ответственными периодами при эксплуатации самолёта. В этот период возникают максимальные нагрузки на всю конструкцию. Гарантировать приемлемый разгон для поднятия в небо и мягкое касание поверхности посадочной полосы могут только надёжно сконструированные стойки шасси. В полете они служат дополнительным элементом придания жесткости крыльям.

Конструкция наиболее распространённых моделей шасси представлена следующими элементами:

  • подкос складной, компенсирующий лотовые нагрузки;
  • амортизатор (группа), обеспечивает плавность хода самолёта при движении по взлетно-посадочной полосе, компенсирует удары во время контакта с землёй, может устанавливаться в комплекте с демпферами-стабилизаторами;
  • раскосы, выполняющие роль усилителя жесткости конструкции, могут называться стержнями, располагаются диагонально по отношению к стойке;
  • траверсы, крепящиеся к конструкции фюзеляжа и крыльям стойки шасси;
  • механизм ориентирования – для управления направлением движения на полосе;
  • замочные системы, обеспечивающие крепление стойки в необходимом положении;
  • цилиндры, предназначенные для выпуска и убирания шасси.

Сколько колес размещено у самолета? Количество колёс определяется в зависимости от модели, веса и назначения воздушного судна. Наиболее распространённым считают размещение двух основных стоек с двумя колёсами. Более тяжёлые модели – трёх стоечные (размещены под носовой частью и крыльях), четырёх стоечные – две основные и две дополнительные опорные.

Видео

Описанное устройство самолета даёт лишь общее представление об основных конструктивных составляющих, позволяет определить степень важности каждого элемента при эксплуатации воздушного судна. Дальнейшее изучение требует глубокой инженерной подготовки, наличия специальных знаний аэродинамики, сопротивления материалов, гидравлики и электрооборудования. На производственных предприятиях авиастроения этими вопросами занимаются люди, прошедшие обучение и специальную подготовку. Самостоятельно изучить все этапы создания самолёта можно, только для этого следует запастись терпением и быть готовым к получению новых знаний.

К основным частям самолёта относятся:

· фюзеляж;

· оперение;

· силовая установка;

· система управления.

Крыло(1) предназначено для создания подъёмной силы Y и обеспечения поперечной устойчивости, а элероны, расположенные на концах крыла в хвостовой его части, обеспечивают поперечную управляемость самолёта.

На крыле располагается механизация (закрылки, щитки, предкрылки), улучшающая взлётно-посадочные характеристики. В крыле может размещаться топливо, к крылу могут крепиться шасси, двигатели, подвесные топливные баки, вооружение.

Фюзеляж (2) предназначен для размещения в нём экипажа, пассажиров, грузов, он является основной силовой частью самолёта, т.к. к нему крепятся все остальные части самолета.

Оперение подразделяется на горизонтальное: стабилизатор (3) и руль высоты (4), и вертикальное: (киль (5) и руль направления (6).

Горизонтальное оперение (Г.О ) обеспечивает продольную устойчивость (стабилизатор ) и управляемость (руль высоты ).

Вертикальное оперение (В.О ) обеспечивает путевую устойчивость (киль ) и управляемость (руль направления ).

Шасси(7) – это система опор самолета, предназначенная для устойчивого передвижения самолёта по земле, стоянки, взлета и посадки. Для уменьшения сопротивления на современных самолетах шасси в полете убирается.

Силовая установка (8) включает в себя двигатели, топливную и маслянную системы и предназначена для создания в полёте тяги, необходимой для перемещения самолета.

Система управления подразделяется на основную и вспомогательную.

Основная система управления предназначена для управления движением самолёта, а вспомогательная - для управления отдельными частями и агрегатами.

В основную систему управления входят: ручка управления (штурвал с колонкой на тяжёлых самолётах) и педали, а также проводка управления, которая соединяет рули с рычагами управления.

Система управления самолетом выполнена таким образом, чтобы воздействия на командные рычаги соответствовали естественным рефлексам пилота.

При отклонении ручки управления (штурвальной колонки) вперед («от себя») руль высоты отклоняется вниз и нос самолета опускается вниз. При движении ручки «на себя» руль высоты отклоняется вверх и самолет поднимает нос вверх.

Отклонение руля направления обеспечивается нажатием педалей. Если пилот нажимает на правую педаль, то руль направления отклоняется вправо, и самолет поворачивается вправо и наоборот.

Покупая билеты на авиарейс, пассажиры стараются выбрать себе удобные места, редко кто задумывается о безопасности. А ведь не все места равноценны в момент возникновения аварийной ситуации. В этой статье мы покажем, какие самые безопасные места в самолете, разберем тему подробно.

Передние места обычно считаются очень удобными, в них даже располагаются вип-зоны, но это никак не говорит об их безопасности, ведь при крушении самолет основной удар принимает на носовую часть.

Средние места в салоне

Эти места в салоне машины считаются также опасными, поскольку они находятся над крылом аэролайнера, где расположено топливо. В случае аварии большая вероятность его возгорания. Однако статистика говорит о том, что число выживших во время авиакатастроф примерно одинаково среди тех, кто сидел впереди и в средине салона.

Места в «хвосте» салона

Где в самолете безопаснее, так это в конце салона. Аварии обычно происходят на взлетной полосе при старте самолета или во время посадки. На переднюю часть аэролайнера приходится при этом основной удар, тогда как хвостовая часть страдает меньше, что дает шанс пассажирам этого отсека на выживание. Эти места в лайнере можно считать самыми безопасными в самолете, хотя в случае серьезных катастроф, например, при падении машины с высоты 10 км они не спасут.

Хороший шанс на спасение, особенно при аварийной эвакуации пассажиров, позволяют иметь места у аварийного выхода. Пассажиры, занимающие их, первыми покинут лайнер.

Исследования журнала Popular Mechanics

Научно-популярный журнал провел исследование, какие места в самолете самые безопасные. Проанализировав статистику за 30 лет американского Национального совета по безопасности и сравнив число жертв катастроф на самолетах в зависимости от их нахождения в салоне, издание приводит такие цифры:

  • В «хвосте» салона больше всего было выживших людей в авиакатастрофах – 69%;
  • В средней части (над крылом и перед ним) - 56%;
  • В передней части лайнера процент выживших составил 49 %.

Исследования журнала Popular Mechanics где в самолете безопаснее

Если рассматривать вопрос о большей безопасности пассажиров левой или правой стороны самолета, то статистика говорит об их одинаковых шансах.

Исследования американцев

Американцы потратили на это исследование полтора миллиона долларов и разбили старый аэроплан. Пилот вначале управлял Боингом, затем спрыгнул на парашюте, а машина дальше управлялась дистанционно. В пустыне Сонора самолет потерпел крушение и врезался в поверхность земли на скорости 225 км/ч.

Если Вы любите много и часто путешествовать, то наверняка проводите много времени в дороге, а именно — на борту самолета. Если полет длится недолго, то на небольшие неудобства внимания не обращаешь, но если лететь Вам нужно 8-10 часов, то комфорт имеет большое значение, и при прочих равных условиях я всегда выберу более удобные условия перелета.

Комфорт Вашего полета зависит от многих факторов — развлечений на борту, но самое главное — от удобства самого места, на котором Вы проведете практически весь путь. Сегодня я хочу рассказать о том, чем отличаются разные места на борту самолета, как узнать заранее, какой салон будет именно у Вашего рейса, и как выбрать понравившееся Вам место.

Чтобы выбрать лучшее место на борту самолета, нужно сначала узнать, на каком именно самолете Вы полетите. Причем даже одинаковые самолеты у разных авиакомпаний могут иметь различную компоновку кресел, поэтому Важно узнать не просто тип самолета, а конкретный самолет.

Сделать это можно еще до покупки билета на сайте авиакомпании (в расписании рейсов) или в поисковике билетов.

Например, при поиске билета на сразу в описании маршрута можно посмотреть название авиакомпании и номер рейса. Посмотрим на примере рейса Лондон-Нью-Йорк:

Первый сегмент полета будет осуществляться самолетом авиакомпании Norwegian Air, номер рейса DY-2802. Используя эту информацию, можно узнать больше о конкретном самолете на сайтах www.seatguru.com и www.seatexpert.com .

2. Где найти схему салона

Посмотреть схему салона можно также на специализированных сайтах.

Попробуем найти схему салона самолета для того же рейса Лондон-Нью-Йорк для первого сегмента полета на сайте www.seatguru.com .

Сначала на главной странице вводим необходимую информацию — название авиакомпании и номер рейса (их мы уже узнали на поисковике билетов или на сайте авиакомпании):

Открывается окошко, где можно посмотреть, какой будет самолет. Чтобы увидеть схему салона, нажимаем «View map»:

Открывается страница с подробной информацией о самолете, а также схема расположения кресел:

3. Особенности разных мест на борту самолета

Кроме подробного изучения схем, нужно помнить о некоторых особенностях разных мест на борту и подбирать самое лучшее место исходя из своих потребностей. Рассмотрим разные типы мест в самолете.

3.1. Места у аварийного выхода

Если Ваш рост — выше среднего, то эти места созданы специально для Вас! В ряду напротив аварийного выхода гораздо больше места для ног, чем на обычных местах. Но есть и ограничения — ручную кладь придется убрать на багажную полку, т.к. правила безопасности не разрешают ставить вещи в проходе к аварийному выходу. Так что ни под свое, ни под кресло впередисидящего пассажира ничего положить нельзя. Также к аварийным выходам не садят пассажиров с детьми, т.к. предполагается, что у аварийного выхода должен сидеть человек, который будет способен помочь стюардессам открыть аварийный выход и провести эвакуацию пассажиров.

Также учтите, что если ваше место расположено в ряду, который находится перед аварийным рядом, то спинку кресла Вы откинуть не сможете, чтобы не загораживать аварийный выход.

3.2. Места в начале самолета

  • Чаще всего самый первый ряд бронируется для часто летающих пассажиров и для пассажиров с детьми. Так что учтите, что, возможно, поспать Вам не удастся из-за плачущего младенца. Хотя от этого Вы не застрахованы и на других местах, но здесь вероятность выше.
  • Обслуживание начинается как раз с первых рядов, так что у Вас будет максимальный выбор блюд.
  • До туалета придется пройтись, т.к. туалетом для бизнес-класса обычно пользоваться нельзя.
  • После приземления, Вы сможете покинуть самолет в первых рядах, сразу после пассажиров первого и бизнес-класса.

3.3. Места в середине самолета

Эти места не обладают ярко выраженными недостатками или преимуществами. Когда выбираете место в середине самолета, обратите внимание, не будет ли крыло самолета загораживать Вам обзор, если планируете сидеть около иллюминатора.

3.4. Места в хвосте самолета

По статистике места, находящиеся в хвостовой части самолета, считаются наиболее безопасными, т.к. большинство пассажиров, выживших в авиакатастрофе, находились именно в хвостовой части.

Но абсолютно безопасных мест не бывает, поэтому давайте рассмотрим другие особенности данных мест:

  • в хвостовой части находятся туалеты, что с одной стороны удобно — не нужно далеко идти, но с другой стороны, рядом с Вами всегда будут ходить люди, так что может быть очень шумно.
  • на последних рядах не всегда бывают иллюминаторы, поэтому, если Вы хотите наслаждаться видами, заранее посмотрите схему самолета, на котором Вы полетите.
  • также на последнем ряду может не откидываться спинка, т.к. дополнительное место не предусмотрено.
  • если Вы любите фотографировать вид из иллюминатора, то учтите, что в хвостовой части может быть плохая видимость из-за шлейфа выхлопов.
  • если самолет не забит под завязку, то большинство свободных мест обычно бывает именно в хвостовой части, так что можно будет занять сразу несколько кресел, удобно развалившись.
  • если Вы летите с пересадкой, то лучше не садитесь в самый хвост самолета, т.к. выйти Вы сможете только самым последним, тем самым потеряете много времени.
  • раздача еды обычно начинается с начала или середины самолета, поэтому если Вы не заказали спец.питание, каких-то блюд Вам уже может не хватить (например, Вы едите только рыбу, а останется только несколько порций с мясом).

3.5. Самые неудобные места

Кроме относительно удобных мест, которые имеют и преимущества, и недостатки, есть и такие места, на которые категорически не рекомендуется садиться, например:

  • места в ряду, расположенном перед аварийным выходом. У Вас не будет возможность откинуть спинку.
  • места в среднем ряду (если в самолете предусмотрено три ряда кресел, с компоновкой 3-3-3, 3-4-3, 2-5-2). Особенно если Вы сидите в середине этого ряда — сложно выбираться в туалет, возможно, самим придется пропускать пассажиров, также сложно достать что-нибудь с багажной полки, дольше всех выбираться после остановки самолета.
  • места рядом с туалетом — может быть неприятный запах, а также снующие туда-сюда люди не дадут отдохнуть.

4. Как забронировать конкретное место на борту

Когда Вы определились с местом, которое хотите занять, необходимо забронировать его. Сделать это можно как заранее, так и непосредственно перед вылетом. При этом нужно понимать, что чем раньше Вы займетесь бронированием места, тем больше шансов будет занять именно то, что Вы хотите.

Итак, есть несколько вариантов бронирования места.

4.1. Бронирование при покупке билета

Если Вы , то скорее всего, можно будет сразу при покупке забронировать и место на борту. Сразу же узнавайте о возможности такой опции.

Особенности. Если Вы летите лоукостом, то, скорее всего, за бронирование конкретного места взимается дополнительная оплата. Так что смысла бронировать что-то заранее я не вижу, только если Вам действительно по каким-то причинам нужно определенное место (например, Вы едете с ребенком и хотите быть заранее уверены в том, что будете сидеть рядом или займете место в первом ряду). Если Вы не бронируете место заранее, то вполне вероятно, что сможете воспользоваться другой опцией выбора, об этом ниже.

4.2. Бронирование в личном кабинете

Если Вы купили билет у посредника (например, через или skyscanner ), то Вы можете управлять своим бронированием на сайте авиакомпании. Просто заходите на сайт авиакомпании, регистрируетесь (или сразу заходите в личный кабинет, если уже зарегистрированы) и в личном кабинете заходите в раздел «мои бронирования» или «управление бронированием». Там уже можно выбрать места (если есть такая опция) или, например, вставить номер карты для учета миль.

4.3. Выбор места во время он-лайн регистрации на рейс

Он-лайн регистрация начинается обычно за 24 часа до отправления самолета, но бывает открывается и раньше, нужно узнавать на сайте авиакомпании. Лучше всего регистрироваться сразу, в первые минуты после начала регистрации, так будет больше шансов, что Вы успеете забронировать нужное место. Чтобы не пропустить время, поставьте себе напоминание. Опять же, этот вариант не касается лоукост-компаний, т.к. там выбор места только за дополнительную плату.

4.4. Выбор места во время регистрации в аэропорту

Здесь тоже имеет смысл приезжать в аэропорт пораньше, чтобы пройти регистрацию в числе первых. Самые лучшие места уже бывают заняты, но Вы хотя бы сможете выбрать место у иллюминатора или в проходе, в средней части самолета или в конце. Если Вы прибегаете к стойке регистрации в последнюю минуту, то скорее всего выбрать место уже будет нельзя. Это касается рейсов на популярные направления в разгар сезона. Если Вы летите в низкий сезон и самолет полупустой, то ближе к конце регистрации можно, например, попросить место на свободном ряду, где рядом с Вами никого не будет.

4.5. Выбор места после завершения посадки на борт

Как только объявили о завершении посадки, Вы можете смело выбрать себе более удобное место. Это касается, в первую очередь, лоукостов, т.к. это единственная бесплатная возможность выбора места.

Также особенностью лоукостов является то, что билетов продают чуть больше, чем мест в самолете, т.к. по статистике около 10% пассажиров не приходят на рейс. Поэтому пассажиров, которые пришли самыми последними, часто могут посадить на лучшие места, даже иногда сажают в бизнес-класс (если он, конечно, предусмотрен в этом лоукосте).